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Abstract Chemical Reaction Network Theory uses mathematics to study systems
of reactions and infer their properties from their structure. At the onset is an abstract
definition of a chemical reaction network which is very general and is pertinent beyond
chemistry, e.g. in modeling interactions of microscopic and macroscopic living spe-
cies. This allows the theory to provide widely applicable theorems. It also results in
that the idea of chemical composition is mostly used implicitly in examples to illus-
trate theorems, not explicitly to establish new properties. In this paper we propose a
formalism for species composition in a way that generalizes the idea of atomic com-
position—for instance, elementary species will extend the idea of atoms. We envision
that this formalism could lead to more theorems on classes of networks that are of
interest in biochemistry. Toward that prospect, we prove that if there is no isomerism
among elementary species, and if a newly formalized and widely applicable revers-
ibility condition holds, then a reaction network is vacuously persistent: no species will
tend to extinction if all species are implicitly present at initial time. This paper is the
second in a series of three articles. The first paper studies vacuous persistence and the
third one probes a class of enzymatic networks.
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1 Introduction

This paper is the second in a series of three articles on the persistence of chemical
reaction networks. A reaction network is persistent provided no species tend to extinc-
tion if all species are present at initial time. Persistence is inherently interesting and
has implications for the global asymptotic stability of positive equilibrium states. In
Gnacadja [4], the first article in this series, we introduce and characterize vacuous
persistence, a stronger form of persistence in which the initial state is merely required
to implicitly have all species. A major motivation for this three-part work was the intu-
ition that persistence should apply to chemical reaction networks in which species are
made of building blocks that are conserved and processes are fundamentally reversible.
Proving this requires specific and relevant definitions of notions of building blocks,
of fundamentally reversible processes, etc. This paper addresses these prerequisites.

We develop a theory of species composition inspired by the idea of atomic compo-
sition of molecules—for instance, our concept of elementary species extends that of
atoms. In this extension, two elementary species may be distinct and yet have identical
composition. We obtain several results. A notable one is Theorem 3.6 on canonical
bases for the stoichiometric space and its orthogonal, the conservation space. The basis
of the conservation space consists of vectors that are linear combinations of species
with nonnegative integer coefficients. This basis describes in a comprehensive and
minimal fashion the conservativeness of the network. In the literature, this basis is
usually found by visual inspection of networks used to illustrate theorems. That it is
a basis of the conservation space is typically a tacit property.

We believe that incorporating the idea of species composition in theoretical investi-
gations could yield more results on classes of networks that model actual biochemical
interactions. Instances of such approaches include our work in Gnacadja [3] on the
existence, uniqueness and global asymptotic stability of equilibria in networks of
reversible binding reactions, and the work of Shinar, Alon and Feinberg [6] on the
sensitivity of equilibrium concentrations with respect to total concentrations of ele-
mentary species. In this paper, we obtain a sufficient condition for vacuous persistence
as follows.

Theorem 1.1 (Theorem 6.9) Suppose that a mass-action reaction network is explic-
itly-reversibly constructive. If there is no isomerism among the elementary species,
then the network is vacuously persistent.

Isomeric species are species that have the same composition. Basically, a network
is constructive if species have compositions which are consistent across reactions
and can be inferred completely from them, and all required elementary species are
actually in the network, possibly with isomerism among them. A network is explic-
itly-reversibly constructive if in addition, every non-elementary species occurs as the
target of a binding reaction and also as the source of a dissociation reaction, and every
elementary species occurs in the source of a binding reaction and also in the target
of a dissociation reaction. Explicitly-reversibly constructive networks are frequent in
pharmacology and biochemistry, e.g. in models of receptor-ligand interactions and
enzyme-catalyzed conversions.
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(a) (b)

(c)

Fig. 1 Examples of chemical reaction networks. (a) The allosteric ternary complex model of pharmacol-
ogy. The interaction is allosteric, i.e. not orthosteric, because the receptor R has different binding sites for
the ligands A and B. (b) Two enzymes E and F catalyzing the interconversion of two substrates A and B.
This is a futile cycle because each enzyme reverses the action of the other. (c) This network does not model
a biochemical interaction we know of, but it serves as an illustrative example in a number of instances

We have observed that instances of non-persistence and of non-obvious persistence
in the literature always involve networks with isomerism among the building blocks.
Theorem 1.1 shows that this is not accidental. However, the absence of isomerism
among the elementary species is not an absolute requirement for vacuous persistence.
Such isomerism occurs among substrates and products in enzymatic networks and yet,
they can be vacuously persistent. We show this in Gnacadja [5], the third and final
paper in this series of articles.

The remaining content of the paper covers five sections. In Sect. 2, we define and
study species compositions, constructive networks and several connected concepts. In
Sect. 3, we describe canonical bases for the stoichiometric space and its orthogonal,
the conservation space. Section 4 presents results on how to prove that a reaction net-
work is constructive. Section 5 describes the stoichiometry compatibility classes of
constructive networks. Finally, in Sect. 6, we discuss topics related to the reachability
approach to persistence [4] in the context of construction networks. This culminates
with Theorem 6.9 already noted in this introduction as Theorem 1.1.

2 Species composition and constructive networks

We propose and develop a formal notion of species composition to account for the
idea that species are composed of elementary units or building blocks. As this article
is the second in a series of three, we rely on Section 3 of Gnacadja [4], the first article,
for general background material on reaction networks. Figure 1 shows examples of
reaction networks.

To begin, we set some notations to be used throughout the paper.

Notation 2.1 For m, n ∈ Z, [m..n] = {k ∈ Z : m ≤ k ≤ n}. For n ∈ Z≥1, 0n denotes
the n-tuples whose components all equal 0, and for i ∈ [1..n], en,i denotes the n-tuple
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having 1 in position i and 0 in the other n − 1 positions. For x = (x1, . . . , xn) ∈ R
n ,

the length of x is |x | = |x1| + · · · + |xn| = ‖x‖�1 . For x, y ∈ R
n , we write x ≤ y or

y ≥ x (resp. x < y or y > x) to mean that xi ≤ yi (resp. xi < yi ) for all i ∈ [1..n].
For a finite set E , we denote |E | the cardinality of E ; and when addition makes sense,
we write sum(E) for the sum of its elements.

A reaction network N = (S ,C ,R) is fixed throughout this section and S denotes
its stoichiometric space.

Definition 2.2

• A binding or association reaction is a reaction Q′ → Q′′ such that
∣
∣Q′∣∣ ≥ 2 and

∣
∣Q′′∣∣ = 1. (Q′′ is a species, Q′ is not.)

• An unbinding or dissociation reaction is a reaction Q′ → Q′′ such that
∣
∣Q′∣∣ = 1 and

∣
∣Q′′∣∣ ≥ 2. (Q′ is a species, Q′′ is not.)

• An isomerization reaction is a reaction Q′ → Q′′ such that
∣
∣Q′∣∣ = ∣

∣Q′′∣∣ = 1. (Both Q′ and Q′′ are species.)
• Two species X ′ and X ′′ are stoichiometrically isomeric if X ′ − X ′′ ∈ S.
• A bound species is a species that is the target of a binding reaction or the source

of a dissociation reaction (or both).

The notion of stoichiometric isomerism is intended to account for combinations of
reactions whose net effect is to transform one species into another, as is the case for
instance in enzymatic reactions. Stoichiometric isomerism gives rise to an equivalence
relation on the set S of species.

For illustration of Definition 2.2, the network of Fig. 1a consists of four reversible
binding reactions (four pairs each consisting of a binding reaction and the reverse
dissociation reaction). The bound species are R A, RB and R AB (not because they
are denoted with expressions of more than one letter). The network of Fig. 1b consists
of two binding reactions and four dissociation reactions. The bound species are E A
and F B. The species A and B are stoichiometrically isomeric because

A − B = (

(F + A) − F B
) + (

F B − (F + B)
) ∈ S.

The network of Fig. 1c consists of two binding reactions and two dissociation reac-
tions. The bound species are C and D. The species A and B are stoichiometrically
isomeric, and so are the species C and D, because

A − B = (

(2A + B) − D
) + (

D − (A + 2B)
) ∈ S and

C − D = (

C − (2A + B)
) + (

(A + 2B) − D
) ∈ S.

Definition 2.3 A species composition map, or simply a composition of N is a map
E : S → Z

n≥0 \ {0n}, where n is a positive integer.

A composition map E = (E1, . . . ,En) : S → Z
n≥0 \ {0n} for the network N is

fixed for the rest of this section. The idea of a composition map will become more
precise as we develop it, but the basic intuition is that the composition E (X) of a
species X indicates how many instances of the species of reference are present in X .
There could be species of reference that are not in the network N .
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Definition 2.4

• A species X ∈ S is E -elementary if
∣
∣E (X)

∣
∣ = 1,

i.e. if E (X) ∈ {en,1, . . . , en,n}.
• A species X ∈ S is E -composite if

∣
∣E (X)

∣
∣ ≥ 2,

i.e. if E (X) ∈ Z
n≥0 \ {0n, en,1, . . . , en,n}.

• Two species X ′, X ′′ ∈ S are E -isomeric if E (X ′) = E (X ′′).

E -isomerism gives rise to an equivalence relation on the set S of species.
Let Ẽ = (Ẽ1, . . . , Ẽn) : RS → R

n be the unique R-linear extension of E . The
map Ẽ gives rise to a sensible notion of composition of complexes, which leads to a
concept of conservation of composition.

Definition 2.5

• A reaction Q′ → Q′′ is E -conservative if Ẽ (Q′) = Ẽ (Q′′).
• The network N is E -conservative, or equivalently the composition E is conserved

in the network N , if all reactions are E -conservative.

Figure 2 shows examples of conserved compositions for the networks of Fig. 1.
These compositions are suggested by visual inspection of the networks. The devel-
opments in this paper provide systematic means of ascertaining the conservativeness
features that are the reason why one usually needs such compositions.

We record a few obvious results.

Proposition 2.6
(

The network N is E -conservative
) ⇔

(

KerẼ ⊇ S
)

.

Proposition 2.7 If the network N is E -conservative, then stoichiometric isomerism
implies E -isomerism; i.e. if two species are stoichiometrically isomeric, then they are
E -isomeric.

Lemma 2.8 For a nonzero nonsingleton complex Q ∈ C , and for a species X ∈
Supp(Q), we have E (X) ≤ Ẽ (Q) and E (X) 
= Ẽ (Q).

(a) (b) (c)

Fig. 2 Examples of conserved compositions E for the networks of Fig. 1. (a) E for network of Fig. 1a
(b) E for network of Fig. 1b (c) E for network of Fig. 1c. The upper and lower parts of the tables show
the E -elementary and the E -composite species respectively. In the network of Fig. 1b, the species A and B
form the only non-singleton E -isomerism class. In the network of Fig. 1c, the sets {A, B} and {C, D} are the
E -isomerism classes. These three compositions are core compositions (Definition 2.10) of their respective
networks and the three networks are explicitly-reversibly constructive (Definitions 2.13 and 2.14)
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Proposition 2.9 Suppose the network N is E -conservative. Then every bound spe-
cies is E -composite.

The canonical example of a composition is of course the atomic composition of mole-
cules. In this case, n could be the number of entries in the Periodic Table of the Elements
and positions in composition n-tuples could represent atomic numbers. However, this
example is cumbersome and impractical, especially if the species under consideration
are macromolecules. For the network of Fig. 1a for instance, and as illustrated on
Fig. 2a, we have an intuition that species R AB is composed of species R, A and B,
which are elementary within the network, even though they may not be atoms. We
formalize this observation with the notion of core composition.

Definition 2.10 The composition E is a core composition for N provided

• en,1, . . . , en,n ∈ E (S ) and
• KerẼ = S.

One can verify, either by direct calculations or by applying Theorems 4.2 and
4.3, that the three compositions of Fig. 2 are core compositions. This terminology is
intended to express that a core composition E is complete, in that all n E -elementary
compositions do occur in the network, and is minimal, in that E -conservativeness does
not impose constraints beyond those that stoichiometry already imposes. The follow-
ing two theorems articulate these in a formal algebraic way. Theorem 2.11 says that
any core composition is ‘at the core’ of any conserved composition. Theorem 2.12
esentially says that there can only be one core composition.

Theorem 2.11 Any core composition of N is universal among all conserved compo-
sitions of N . For elaboration, suppose that E : S → Z

n≥0\{0n} is a core composition

of N , and let F : S → Z
N≥0 \ {0N } be a conserved composition of N . Then there

exists a unique Z-linear map � : Z
n → Z

N that makes the following diagram com-
mute, and � maps Z

n≥0 into Z
N≥0.

Proof Let F̃ : RS → R
N be the linear extension of F . The map Ẽ : RS → R

n

is surjective and KerF̃ ⊇ S = KerẼ . Therefore, there exists a unique R-linear map
�̃ : R

n → R
N such that F̃ = �̃ ◦ Ẽ . Then, by restriction to S , we have F =

�̃ ◦ E . As a result, �̃ maps en,1, . . . , en,n into Z
N≥0. Therefore, �̃ is the extension of a

Z-linear map � : Z
n → Z

N which maps en,1, . . . , en,n into Z
N≥0. The map � satisfies

F = � ◦ E . The uniqueness of �̃ implies the uniqueness of �. �
Theorem 2.12 If a reaction network has a core composition, then all core composi-
tions are equivalent up to indexing permutations in composition tuples. For elabora-
tion, suppose E : S → Z

n≥0 \ {0n} and E ′ : S → Z
n′
≥0 \ {0n′ } are core compositions
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of the network N . Then n = n′ and the Z-linear map � such that E ′ = � ◦ E is an
automorphism of Z

n that permutes the canonical basis vectors en,1, . . . , en,n.

Proof Let � : Z
n → Z

n′
(resp. �′ : Z

n′ → Z
n) be the Z-linear map such that

E ′ = � ◦ E (resp. E = �′ ◦ E ′). Then we have E = ϕ ◦ E (resp. E ′ = ϕ′ ◦ E ′)
both if ϕ = �′ ◦ � and ϕ = IdZn (resp. ϕ′ = � ◦ �′ and ϕ′ = Id

Zn′ ). Therefore
�′ ◦ � = IdZn and � ◦ �′ = Id

Zn′ . It follows that n = n′ and � is a Z-linear auto-
morphism of Z

n with inverse �−1 = �′. Because � maps Z
n≥0 into itself, we have

|�(x)| ≥ |x | for all x ∈ Z
n≥0. Likewise, we have

∣
∣�−1(x)

∣
∣ ≥ |x | for all x ∈ Z

n≥0,
whence |x | ≥ |�(x)| for all x ∈ Z

n≥0. So |�(x)| = |x | for all x ∈ Z
n≥0, and it follows

that �
({en,1, . . . , en,n}) = {en,1, . . . , en,n}. �

As a result of Theorem 2.12, if E is a core composition of N , then the notions
of E -elementary, E -composite, and E -isomeric species are independent of the choice
of E among core compositions, and we simply use the terminology of elementary,
composite, and isomeric species. Also, stoichiometric isomerism and E -isomerism
coincide and we simply call isomerism classes the equivalence classes with respect to
the two relations.

Definition 2.13 A reaction network is constructive if it admits a core composition.

This terminology is from Shinar, Alon and Feinberg [6, Definition 8.1]. The two
usages are consistent because of Theorem 3.6. The notions of elements and compounds
in this prior work correspond to our elementary and composite species respectively.
We note however that if an element as defined in this prior work is one of many isomers,
then the isomers other than the element are compounds.

Definition 2.14 Consider a reaction network.

• A species Y is explicitly constructible (resp. explicitly destructible) if there are
isomerization reactions Y0 → · · · → Y� (resp. Y� → · · · → Y0), where � ∈ Z≥0,
such that Y0 is the target of a binding reaction (resp. the source of a dissociation
reaction) and Y� = Y .

• A species X is explicitly constructive (resp. explicitly destructive) if there is a
binding reaction Q → Y (resp. a dissociation reaction Y → Q) such that X ∈
Supp(Q).

• The reaction network is explicitly constructive provided
– The network is constructive;
– Each composite species is explicitly constructible or explicitly destructible

or both; and
– Each elementary species is explicitly constructive or explicitly destructive or

both.
• The reaction network is explicitly-reversibly constructive provided

– The network is constructive;
– Each composite species is both explicitly constructible and explicitly destruc-

tible; and
– Each elementary species is both explicitly constructive and explicitly destruc-

tive.
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(a)

(b) (c)

Fig. 3 (a) A hypothetical network with species in usual chemistry notation. (b) E ′, a near-core non-core
composition for the network shown in (a). (c) E ′′, a core composition for the network shown in (a). The upper
and lower parts of the tables show the elementary and the composite species relative to each composition.
The composition E ′(O H) = (1, 0, 1) is suggested by known information not represented in the network.
Within the scope of the network, the species O H is elementary as shown by the core composition E ′′. This
reveals that the network may not have all the reactions that were intended.

The pre-complete networks of reversible binding reactions we introduced in Gnac-
adja [3] are explicitly-reversibly constructive; the network of Fig. 1a is of that class.
More generally, if a reaction network consisting of binding and dissociation reactions
is constructive and weakly reversible, then it is explicitly-reversibly constructive; the
networks of Fig. 1a, c are of that class. The futile enzymatic cycle of Fig. 1b is an
example of an explicitly-reversibly constructive network that is not weakly reversible.
More generally, futile binary enzymatic networks (see Gnacadja [5]) are explicitly-
reversibly constructive networks that are usually not weakly reversible.

3 Canonical bases

A reaction network N = (S ,C ,R) with stoichiometric space S is fixed for this
section. The results presented here show that in the presence of a core composition,
one has explicit, fairly canonical information about the stoichiometric space S and the
conservation space S⊥. Most of these properties do not require that the composition
conservativeness of the network be minimal, whence the following definition.

Definition 3.1 A composition E : S → Z
n≥0 \ {0n} is a near-core composition of

the network N if

• en,1, . . . , en,n ∈ E (S ), i.e. all E -elementary compositions occur, and
• KerẼ ⊇ S, i.e. N is E -conservative.

Figure 3 shows an example of a near-core non-core composition.
A near-core composition E = (E1, . . . ,En) : S → Z

n≥0 \ {0n} for the network N
is fixed for the rest of this section. We set the following notations.
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Notation 3.2

• For i ∈ [1..n],Xi := E −1(en,i ) is the E -isomerism class of E -elementary species
with E -composition en,i , and pi := |Xi | is the number of these species.

• I := E (S ) \ {en,1, . . . , en,n} is the set of n-tuples that occur as E -composition
of E -composite species; I ⊂ Z

n≥0 \ {0n, en,1, . . . , en,n}.
• For α ∈ I,Yα := E −1(α) is the E -isomerism class of E -composite species with

E -composition α, and qα := |Yα| is the number of these species.
• Se is the set of E -elementary species; Se=⊔

i∈[1..n]Xi .

Sc is the set of E -composite species; Sc = ⊔

α∈I Yα .

S 1
e is the set of E -elementary species whose E -isomerism classes are singletons;

S 1
e = ⊔

i∈[1..n],|pi |=1Xi .

For i ∈ [1..n],Sc,i is the set of composite species whose E -composition has a
positive term of index i ; Sc,i := {

Y ∈ Sc : Ei (Y ) ≥ 1
}

.
• p := |Se| = ∑n

i=1 pi is the total number of E -elementary species.

q := |Sc| = ∑

α∈I qα is the total number of E -composite species.

r := |S | = p + q is the total number of species.

n already denotes the number of E -isomerism classes of elementary species.

m := |I | is the number of E -isomerism classes of composite species.

Here is, for illustration, what these notations evaluate to for the futile enzymatic
cycle of Fig. 1b with the core composition of Fig. 2b:

X1 = {E} , X2 = {F} , X3 = {A, B} , p1 = 1 , p2 = 1 , p3 = 2 ,

I = {(1, 0, 1), (0, 1, 1)} ,

Y(1,0,1) = {E A} , Y(0,1,1) = {F B} , q(1,0,1) = 1 , q(0,1,1) = 1 ,

Se = {E, F, A, B} , Sc = {E A, F B} ,

S 1
e = {E, F} , Sc,1 = {E A} , Sc,2 = {F B} , Sc,3 = {E A, F B} ,

p = 4 , q = 2 , r = 6 , n = 3 , m = 2.

By the Rank-Nullity Theorem, we have:

Theorem 3.3

nullity
(

Ẽ
)

= dim KerẼ = r − n = p + q − n = q +
n

∑

i=1

(pi − 1) .

In particular, if (and only if) there is no E -isomerism among the E -elementary species
(i.e. S 1

e = Se), then the nullity of Ẽ equals the number of E -composite species. Note
that if E is a core composition, then the nullity of Ẽ equals the rank of the network.

Using Theorem 3.3 on the networks of Figs. 1a, b, c and 3a, and their core com-
positions of Figs. 2a, b, c and 3c, we readily obtain that they have rank 3, 3, 3 and 2
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respectively. Thus, this can be helpful in calculating the deficiency, an integer attribute
of a reaction network of importance in Chemical Reaction Network Theory. See for
instance Feinberg [2] for the definition and some implications of the deficiency. The
rank of a network is the one ingredient that is usually the least readily available. The
other ingredients, the number of complexes and the number of linkages classes, are
usually obtained by visual inspection. Of course, for this remark to be pertinent, we
must have convenient ways to find core compositions. Section 4 addresses this matter.

We continue in this section with results on canonical bases. Theorem 3.4 provides

a canonical basis for KerẼ . Theorem 3.5 provides for the orthogonal
(

KerẼ
)⊥

of

KerẼ a canonical basis consisting of vectors that are linear combinations of species
with nonnegative integer coefficients. Finally, Theorem 3.6 combines these two results
with canonical bases for the stoichiometric and conservation spaces S and S⊥ in the
case where E is a core composition.

We define the linear map ρ : RS → RS by

ρ(Z) = Z −
n

∑

i=1

Ei (Z)

pi
sum

(

Xi
)

for Z ∈ S . (3.1)

In particular,

ρ(X) = X − 1

pi
sum

(

Xi
)

if X ∈ Xi , and (3.2)

ρ(Y ) = Y −
n

∑

i=1

αi

pi
sum

(

Xi
)

if Y ∈ Yα. (3.3)

Theorem 3.4 For each i ∈ [1..n], let Bi be one of the pi sets of (pi − 1) elements
obtained by excising one element from the set

{

ρ(X) : X ∈ Xi
}

. Then let

B = {

ρ(Y ) : Y ∈ Sc
} 

n
⊔

i=1

Bi = {

ρ(Y ) : Y ∈ Sc
} 

⊔

1≤i≤n
pi >1

Bi .

The set B is a basis of KerẼ .

Proof We see from Eqs. 3.2 and 3.3 that the vectors ρ(Z) for Z ∈ S \S 1
e are pairwise

distinct. So the disjoint unions in the expression of B are justified and the cardinality
of B is equal to the dimension of KerẼ as provided by Theorem 3.3.

From Eq. 3.1, we get that Ẽ
(

ρ(Z)
) = 0n for all Z ∈ S . Hence, B ⊂ KerẼ .

One can verify that the set
{

ρ(Y ) : Y ∈ Sc
}

is linearly independent, and that so is
the set Bi for each i ∈ [1..n] with pi > 1. Furthermore, the sets Bi are pairwise
orthogonal because Bi ⊂ RXi . So the set

⊔n
i=1 Bi is linearly independent. Now,

intersecting the subspaces spanned by
{

ρ(Y ) : Y ∈ Sc
}

and by
⊔n

i=1 Bi yields the
zero space. So the set B is linearly independent. �
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Let the linear map : R
n → RS be defined by τ(en,i ) = Ti for i ∈ [1..n], where

Ti := sum
(

Xi
) +

∑

α∈I

αi sum
(

Yα

) = sum
(

Xi
) +

∑

Y∈Sc

Ei (Y ) Y . (3.4)

Theorem 3.5 We have
(

KerẼ
)⊥ = Imτ and the set B′ = {

T1, . . . , Tn
}

is a basis

of
(

KerẼ
)⊥

. In particular, B′ is a linearly independent subset of the conservation

space S⊥.

Proof We obtain the adjunction property

〈

τ(x), Q
〉 = 〈

x, Ẽ (Q)
〉

, ∀ x ∈ R
n, ∀ Q ∈ RS (3.5)

by verifying that each side of the equality equals Ei (Q) when x ∈ {en,1, . . . , en,n} and

Q ∈ Se or Q ∈ Sc. As a result, we have
(

Imτ
)⊥ = KerẼ . Hence,

(

KerẼ
)⊥ = Imτ ,

and the set
{

T1, . . . , Tn
}

spans
(

KerẼ
)⊥

. From Theorem 3.3,
(

KerẼ
)⊥

has dimension

n, so the set
{

T1, . . . , Tn
}

is a basis of
(

KerẼ
)⊥

. �

We combine in Theorem 3.6 what Theorems 3.4 and 3.5 say when E is a core
composition.

Theorem 3.6 Suppose that E is a core composition of N . Then:

• The set B from Theorem 3.4 is a basis of the stoichiometric space S.
• The set B′ from Theorem 3.5 is a basis of the conservation space S⊥. Each vector

in B′ is a linear combination of species with nonnegative integer coefficients.

The basis B′ provides a canonical, comprehensive and minimal description of the
conservativeness of the network. Because of Theorem 2.12, the basis B′ is indepen-
dent of the choice of a core composition for the (constructive) network N . This result
and its proof are rigorous statement and justification for the common practice of cata-
loging conservation laws by visual inspection of reaction networks. Section 4 provides
means of finding core compositions, thereby turning Theorem 3.6 into a useful tool for
applications. To illustrate this theorem, we use the futile enzymatic cycle of Fig. 1b,
its core composition of Fig. 2b, and the related values of the notations of Notation 3.2
listed earlier in this section. We have

ρ(E) = 0 , ρ(F) = 0 , ρ(A) = 1

2
(A − B) , ρ(B) = 1

2
(B − A) ,

ρ(E A) = E A − E − 1

2
(A + B) , ρ(F B) = F B − F − 1

2
(A + B) ,

T1 = E + E A , T2 = F + F B , T3 = A + B + E A + F B .
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Below are one of the two possible bases B and the basis B′.

B =
{

1

2
(A − B) , E A − E − 1

2
(A + B) , F B − F − 1

2
(A + B)

}

B′ = {E + E A , F + F B , A + B + E A + F B }

4 Finding core compositions

Let N = (S ,C ,R) be a reaction network and let E : S → Z
n≥0 \ {0n} be a com-

position of N . We devote this section to ways to prove that E is a core composition
of N when it is known that E is a near-core composition. We adopted this approach
because the common practice of cataloging conservation laws by visual inspection
produces near-core compositions. The difficulty lies in the minimality aspect of a core
composition, i.e. the fact that KerẼ ⊆ S. Because of Theorem 3.4, this containment
relationship is equivalent to the property that ρ(Z) ∈ S for all Z ∈ S . But proving
this from the expressions of Eqs. 3.1, 3.2 and 3.3 may not be obvious. The following
result provides other useful expressions for these vectors.

Lemma 4.1 Suppose that E is a near-core composition of N and refer to Notation
3.2.

• For i ∈ [1..n] and X ∈ Xi , we have

ρ(X) = 1

pi

∑

W∈Xi

(X − W ) . (4.1)

• For α ∈ I and Y ∈ Yα , we have

ρ(Y ) = 1

p1· · ·pn

∑

(W1,...,Wn)∈X1×···×Xn

(

Y −
n

∑

i=1

αi Wi

)

. (4.2)

Proof Eq. 4.1 is an obvious reformulation of Eq. 3.2. We prove Eq. 4.2. We have:

∑

(W1,...,Wn)∈X1×···×Xn

(
n

∑

i=1

αi Wi

)

=
n

∑

i=1

⎛

⎝
∑

(W1,...,Wn)∈X1×···×Xn

αi Wi

⎞

⎠

=
n

∑

i=1

αi

⎛

⎝
∑

(W1,...,Wn)∈X1×···×Xn

Wi

⎞

⎠

=
n

∑

i=1

αi

⎛

⎝
∑

(W1,...,Wi−1,Wi+1,...,Wn)∈X1×···×Xi−1×Xi+1×···×Xn

⎛

⎝
∑

Wi ∈Xi

Wi

⎞

⎠

⎞

⎠
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=
n

∑

i=1

αi

⎛

⎝
∑

(W1,...,Wi−1,Wi+1,...,Wn)∈X1×···×Xi−1×Xi+1×···×Xn

sum
(

Xi
)

⎞

⎠

=
n

∑

i=1

αi p1· · ·pi−1 pi+1· · ·pn sum
(

Xi
)

= p1· · ·pn

n
∑

i=1

αi

pi
sum

(

Xi
)

= p1· · ·pn
(

Y − ρ(Y )
)

.

It follows that:

p1· · ·pn ρ(Y ) = p1· · ·pn Y −
∑

(W1,...,Wn)∈X1×···×Xn

(
n

∑

i=1

αi Wi

)

=
∑

(W1,...,Wn)∈X1×···×Xn

(

Y −
n

∑

i=1

αi Wi

)

.

�
Following is one of the two main results of this section.

Theorem 4.2 Refer to Notation 3.2 and suppose that:

(1) E is a near-core composition of N ;
(2) For every i ∈ [1..n], all (E -elementary) species of composition en,i are stoi-
chiometrically isomeric, i.e. (X, W ∈ Xi ) ⇒ (X − W ∈ S); and
(3) For every α ∈ I and Y ∈ Yα , there exist W1 ∈ X1, . . . , Wn ∈ Xn such that

Y −
n

∑

i=1

αi Wi ∈ S.

Then E is a core composition of N .

Proof We just need to show that ρ(Z) ∈ S for all Z ∈ S .

Condition (2) of the theorem along with Eq. 4.1 of Lemma 4.1 imply that ρ(X) ∈ S
if X ∈ Xi for some i ∈ [1..n].
Let α ∈ I and Y ∈ Yα . With Condition (3), we have W 0

1 ∈ X1, . . . , W 0
n ∈ Xn such

that Y −
n

∑

i=1

αi W 0
i ∈ S. Let W1 ∈ X1, . . . , Wn ∈ Xn . For every i ∈ [1..n], both W 0

i

and Wi are in Xi , and so W 0
i − Wi ∈ S by Condition (2). Hence,

Y −
n

∑

i=1

αi Wi = Y −
n

∑

i=1

αi W 0
i +

n
∑

i=1

αi (W 0
i − Wi ) ∈ S .

Then, Eq. 4.2 of Lemma 4.1 implies that ρ(Y ) ∈ S. �
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Theorem 4.2 is directly applicable if each composite species is explicitly con-
structible or explicitly destructible from a non-singleton complex in which all species
are elementary. This is the case for the networks of Fig. 1b and 1c. Theorem 4.2
does readily show that the compositions of Fig. 2b and 2c are core compositions.
But this is not the case for the allosteric ternary complex model of Fig. 1a. To show
that the composition of Fig. 2a is a core composition, or in other such cases, one can
ascertain Condition (3) of Theorem 4.2 by induction, or one can use the following
theorem.

Theorem 4.3 Suppose that:

(1) E is a near-core composition of N ;
(2) E -isomerism implies stoichiometric isomerism; and
(3) Every E -composite species is stoichiometrically isomeric to a bound species.

Then E is a core composition of N .

We state and prove a technical result, which we then use to prove Theorem 4.3. For
α ∈ I , let Iα = {β ∈ I : β ≤ α and β 
= α}.
Lemma 4.4 Assume the hypotheses of Theorem 4.3 and refer to Notation 3.2. Let
Y ∈ Sc and α = E (Y ). There exist σi ∈ Z≥0 for i ∈ [1..n] and σβ ∈ Z≥0 for β ∈ Iα
such that, for all i ∈ [1..n] and Xi ∈ Xi , and all β ∈ Iα and Yβ ∈ Yβ , we have

Y −
⎛

⎝

n
∑

i=1

σi Xi +
∑

β∈Iα

σβ Yβ

⎞

⎠ ∈ S.

We have the conservation relation α = (σ1, . . . , σn) +
∑

β∈Iα

σβ β .

Proof Condition (3) of Theorem 4.3 implies the existence of a complex
Q =

∑

Z∈S

Q Z Z ∈ C of length |Q| ≥ 2 such that Y − Q ∈ S. For each i ∈ [1..n], let

σi =
∑

Z∈Xi

Q Z and Xi ∈ Xi . For each β ∈ I , let σβ =
∑

Z∈Yβ

Q Z and Yβ ∈ Yβ . One

can verify that

−Q =−
⎛

⎝

n
∑

i=1

σi Xi +
∑

β∈I

σβ Yβ

⎞

⎠+
n

∑

i=1

∑

Z∈Xi

Q Z (Xi − Z)+
∑

β∈I

∑

Z∈Yβ

Q Z (Yβ −Z).

With Condition (2) of Theorem 4.3, we get that Xi − Z ∈ S for i ∈ [1..n] and Z ∈ Xi ,
and Yβ − Z ∈ S for β ∈ I and Z ∈ Yβ . Plus we already have Y − Q ∈ S. Therefore

Y −
⎛

⎝

n
∑

i=1

σi Xi +
∑

β∈I

σβ Yβ

⎞

⎠ ∈ S.
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And because S ⊆ KerẼ , it follows that α = (σ1, . . . , σn) +
∑

β∈I

σβ β.

It remains to show that σβ = 0 for β ∈ I\Iα . Let β ∈ I . We have σβ β ≤ α, so
if σβ ≥ 1, then β ≤ α. By contraposition, if β /∈ Iα and β 
= α, then σβ = 0. We
now need to show that σα = 0. We in particular have σα α ≤ α, so σα ≤ 1. Sup-
pose σα = 1. Then we successively have 0n = −α + (σ1, . . . , σn) + ∑

β∈I σβ β =
(σ1, . . . , σn) + ∑

β∈I\{α} σβ β; σi = 0 for i ∈ [1..n] and σβ = 0 for β ∈ I\{α}; and
|Q| = ∑

Z∈S Q Z = ∑n
i=1 σi + ∑

β∈I σβ = σα = 1. But |Q| ≥ 2. So σα = 0. �

Proof (Theorem 4.3) Refer to Notation 3.2. Just as for Theorem 4.2, we only need to
prove that ρ(Z) ∈ S for all Z ∈ S . Condition (2) of Theorem 4.3 along with Eq. 4.1
of Lemma 4.1 imply that ρ(X) ∈ S if X ∈ Xi for some i ∈ [1..n]. For a species Y
with E (Y ) = α ∈ I , we show that

∀ X1 ∈ X1, . . . ,∀ Xn ∈ Xn , Y −
n

∑

i=1

αi Xi ∈ S. (4.3)

This together with Eq. 4.2 of Lemma 4.1 will imply that ρ(Y ) ∈ S. We proceed by
induction on the length |α| of α to prove Property (4.3).

If |α| = 2, then Iα = ∅ and Property (4.3) holds by Lemma 4.4.

Let � ≥ 3 and assume for induction that Property (4.3) holds if |α| < �. Suppose
|α| = � and let Y ∈ Yα . Let σi for i ∈ [1..n] and σβ for β ∈ Iα be as in Lemma 4.4.
Then let Xi ∈ Xi for i ∈ [1..n] and Yβ ∈ Yβ for β ∈ Iα . For each β ∈ Iα , we have

|β| < �, and so by the induction hypothesis, we have Yβ −
n

∑

i=1

βi Xi ∈ S. Then:

S � Y −
n

∑

i=1

σi Xi −
∑

β∈Iα

σβ Yβ

= Y −
n

∑

i=1

σi Xi −
n

∑

i=1

∑

β∈Iα

σβ βi Xi +
∑

β∈Iα

n
∑

i=1

σβ βi Xi −
∑

β∈Iα

σβ Yβ

= Y −
n

∑

i=1

⎛

⎝σi +
∑

β∈Iα

σβ βi

⎞

⎠ Xi −
∑

β∈Iα

σβ

(

Yβ −
n

∑

i=1

βi Xi

)

= Y −
n

∑

i=1

αi Xi −
∑

β∈Iα

σβ

(

Yβ −
n

∑

i=1

βi Xi

)

.

It follows that Y −
n

∑

i=1

αi Xi ∈ S. Property (4.3) is thus proved. �
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5 Stoichiometry compatibility classes of constructive networks

Stoichiometric compatibility classes are canonical invariants in the dynamics of reac-
tion networks. General background material may be found in Section 2 of Gnacadja
[4], the first article in this series of three papers. Here we elaborate on the stoichiometric
compatibility classes of constructive networks. Let N = (S ,C ,R) be a construc-
tive network, let S be the stoichiometric space of N , and let E : S → Z

n≥0 \ {0n} be
a core composition of N . Notation 3.2 is in effect.

For b ∈ R
n , let

P(b) := Ẽ −1(b) ∩ (

R≥0S
)

. (5.1)

More explicitly, P(b) consists of the points u = (uZ )Z∈S ∈ R≥0S that satisfy:

∀ i ∈ [1..n] ,
∑

X∈Xi

u X +
∑

α∈I

αi

∑

Y∈Yα

uY = bi . (5.2)

Theorem 5.1 The correspondence b �→ P(b) in which b ranges over R
n≥0 establishes

a bijective parameterization of the stoichiometric compatibility classes of the network
N .

Proof The stoichiometric compatibility classes are the nonempty traces on R≥0S of
the affine subspaces of RS parallel to S. Because E is a core composition, the linear
map Ẽ : RS → R

n is surjective with kernel S. As a result, the affine spaces parallel
to S are Ẽ −1(b) for b ∈ R

n . Therefore, the stoichiometric compatibility classes are
the sets P(b) for b ∈ R

n such that P(b) 
= ∅. One can verify that P(b) 
= ∅ if and
only if b ∈ R

n≥0, and that if b, b′ ∈ R
n≥0 and P(b) = P(b′), then b = b′. �

Let b ∈ R
n≥0. We consider the interior P>0(b) = P(b) ∩ R>0S and the boundary

P
>0(b) = P(b) \ P>0(b) of P(b), both relative to the affine space parallel to S that
contains P(b). The class P(b) is nondegenerate, i.e. its interior P>0(b) is nonempty,
if and only if b ∈ R

n
>0. Consider also the subsets Pe(b) and P1

e (b) of P(b) consisting
of the points u = (uZ )Z∈S ∈ P(b) that satisfy the following properties.

Pe(b) :
⎧

⎨

⎩

∀ i ∈ [1..n] ,
∑

X∈Xi

u X = bi

∀ Y ∈ Su , uY = 0 .

P1
e (b) : ∃ X1 ∈ X1, . . . , ∃ Xn ∈ Xn :

{

(u X1 , . . . , u Xn ) = b

∀ Z ∈ S \ {X1, . . . , Xn}, uZ = 0 .

One readily sees that P1
e (b) ⊆ Pe(b) = P(b) ∩ RSe ⊆ P
>0(b), and that

P1
e (b) is a finite set of cardinality

∣
∣P1

e (b)
∣
∣ =

n
∏

i=1

pi =
∏

1≤i≤n
pi >1

pi . If there is no
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isomerism among the elementary species, i.e. if S 1
e = Se, then P1

e (b) = Pe(b) =
P(b) ∩ RSe = {b}.

The interpretation of the set P(b) is that it consists of all concentration vectors
such that for each i ∈ [1..n], bi is the total concentration of all the occurrences of
the elementary composition en,i . The subset Pe(b) consists of those concentration
vectors for which only elementary species are present. Further restricting by allowing
only one elementary species in each isomerism class yields P1

e (b). The stoichiometric
compatibility class P(b) is a compact convex polytope. The set Pe(b) is a face of
P(b), the maximal one lying in the elementary species subspace RSe. The points in
P1

e (b) are the vertices of Pe(b), or equivalently the vertices of P(b) lying in RSe.
We illustrate this discussion by continuing with the example that closed Section 3,

i.e. the futile enzymatic cycle of Fig. 1b. For b = (b1, b2, b3) ∈ R
3≥0, we describe the

following sets by the condition that u = (uE , uF , u A, u B, uE A, uF B) ∈ R≥0S must
satisfy to be a member.

P(b) : uE + uE A = b1 , uF + uF B = b2 , u A + u B + uE A + uF B = b3

Pe(b) : uE = b1 , uF = b2 , u A + u B = b3 , uE A = 0 , uF B = 0

P1
e (b) : (uE , uF , u A, u B, uE A, uF B) = (b1, b2, b3, 0, 0, 0) or (b1, b2, 0, b3, 0, 0)

The class P(b) is nondegenerate if and only if b1, b2, b3 > 0. If b3 > 0, then Pe(b)

is a line segment and P1
e (b) consists of its two vertices.

6 Persistence in constructive networks

This final section brings together the developments on species composition is this paper
and on reachability and persistence in the preceeding paper Gnacadja [4] to consider
vacuous persistence in constructive networks. Vacuous persistence is the property that
no species tend to extinction whenever all species are implicitly present at initial time.
We will see that having a core composition map can facilitate efforts to satisty the
necessary and sufficient condition for vacuous persistence from that work. We begin
by recalling the result to be applied.

Theorem 6.1 (Gnacadja [4, Theorem 5.5]) Consider a mass-action reaction network
for which that all trajectories are bounded. Then the following are equivalent:

• The reaction network is vacuously persistent.
• Among the subsets of the set of all species, only the full set is both reach-closed

and stoichiometrically admissible.

All necessary explanations are in the paper. These include discussions on stoichi-
ometric admissibility, reachability and siphons. The next few preparatory results are
about understanding more about these concepts for constructive networks and lead to
the main results of Theorems 6.8 and 6.9. Let N = (S ,C ,R) be a constructive
network and let E : S → Z

n≥0 \ {0n} be a core composition of N . Notation 3.2 is in
effect.

The following result is a consequence of the characterization of stoichiometric
compatibility classes of Eq. 5.2.
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Proposition 6.2 Let Z ⊆ S , let b ∈ R
n≥0, and let i ∈ [1..n]. Suppose that Z is

P(b)-admissible. We have Z ∩ (

Xi  Sc,i
) 
= ∅, i.e. the elementary composition

en,i occurs in Z , either explicitly from an elementary species, or implicitly from a
composite species, or both, if and only if bi > 0.

The next result is obtained by inductively applying Lemma 2.8.

Lemma 6.3 Suppose that all composite species are explicitly destructible. Consider
a reach-closed set Z ⊆ S and let i ∈ [1..n]. If Z ∩ Sc,i 
= ∅, then Z ∩ Xi 
= ∅;
if the elementary composition en,i occurs implicitly (i.e. from a composite species) in
Z , then it occurs explicitly (i.e. from an elementary species) in Z .

The combination of Proposition 6.2 and Lemma 6.3 immediately yields the follow-
ing result.

Proposition 6.4 Suppose that all composite species are explicitly destructible. Let a
set of species Z ⊆ S be both reach-closed and stoichiometrically admissible. Then
Z ∩ Xi 
= ∅ for all i ∈ [1..n]; there is in Z a species from each isomerism class
of elementary species. In particular, if there is no isomerism among the elementary
species, then Se ⊆ Z ; all elementary species are in Z .

Lemma 6.5 Consider a siphon Z ⊆ S .

(i) Suppose that a species Y ∈ Z is explicitly constructible. Then there exists a
species Z ∈ Z such that E (Z) ≤ E (Y ) and E (Z) 
= E (Y ).
(ii) Suppose that a species X ∈ Z is explicitly destructive. Then there exists a
species Z ∈ Z such that E (Z) ≥ E (X) and E (Z) 
= E (X).

Proof We prove statement (i). Let Y ∈ S be explicitly constructible. Then let Q be
a complex and Y0, . . . , Y� be species such that we have the binding reaction Q → Y0
and the isomerization reactions Y0 → · · · → Y�, and Y� = Y . By the conservation of
composition, we have Ẽ (Q) = E (Y ). Then, because |Q| ≥ 2, we have E (Z) ≤ E (Y )

and E (Z) 
= E (Y ) for all Z ∈ Supp(Q) by Lemma 2.8. Now suppose that Y ∈ Z .
Because Z is a siphon we obtain Y0 ∈ Z by induction, and therefore Z ∈ Z for
some Z ∈ Supp(Q).

We prove statement (ii). Let X ∈ S be explicitly destructive. Then let Z → Q be
a dissociation reaction such that X ∈ Supp(Q). By the conservation of composi-
tion, we have E (Z) = Ẽ (Q). Then, because |Q| ≥ 2 and X ∈ Supp(Q), we have
E (Z) ≥ E (X) and E (Z) 
= E (X) by Lemma 2.8. Now suppose that X ∈ Z . Because
Z is a siphon, we have Z ∈ Z . �
Proposition 6.6 Consider a siphon Z ⊆ S .

(i) Suppose that all composite species are explicitly constructible.
If Sc ∩ Z 
= ∅, then Se ∩ Z 
= ∅.
(ii) Suppose that all elementary species are explicitly destructive.
If Se ∩ Z 
= ∅, then Sc ∩ Z 
= ∅.
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Proof Statement (i) of Proposition 6.6 is proved by reasoning by induction with State-
ment (i) of Lemma 6.5. Statement (ii) of Proposition 6.6 is a direct consequence of
Statement (ii) of Lemma 6.5. �

Since the reach-closed sets are the complements of siphons, we immediately get
the following result from Proposition 6.6.

Theorem 6.7 Suppose that the reaction network N is explicitly-reversibly construc-
tive and let Z ⊆ S . If Z is reach-closed, and if Se ⊆ Z or Sc ⊆ Z , then
Z = S .

The next result is a direct consequence of the combination of Theorems 6.7 and 6.1.
It characterizes vacuous persistence in mass-action explicitly-reversibly constructive
networks.

Theorem 6.8 Suppose that the reaction network N is explicitly-reversibly construc-
tive. Then the following are equivalent:

• If a subset Z ⊆ S is both reach-closed and stoichiometrically admissible, then
Se ⊆ Z or Sc ⊆ Z .

• Only S is both reach-closed and stoichiometrically admissible.
• If the network is governed by mass-action kinetics, then it is vacuously persistent.

The particular case highlighted in Proposition 6.4 yields a means of satisfying the
first of the three conditions in Theorem 6.8, whence the main result that follows.

Theorem 6.9 Suppose that the reaction network N is explicitly-reversibly construc-
tive, that there is no isomerism among the elementary species, and that the network is
governed by mass-action kinetics. Then the network is vacuously persistent.

It results from Siegel and MacLean [7, Theorem 3.2] that if a mass-action reaction
network is persistent and complex-balancing, then each nondegenerate stoichiometric
compatibility class contains a unique equilibrium state which is complex-balanced
and is an attractor of the interior of the class. Therefore, if the network N satisfies the
hypotheses of Theorem 6.9, and if in addition N is complex-balancing (in particular if
N is weakly reversible and has deficiency zero), then for every b ∈ R

n
>0, the (unique,

positive, complex-balanced) equilibrium state in P>0(b) is an attractor of P(b).
Theorem 6.9 shows that for a mass-action explicitly-reversibly constructive net-

work, the failure of vacuous persistence requires that there be isomerism among the
elementary species. (Isomerism among composite species does not affect this feature.)
This explains the fact that instances of non-persistence and of non-obvious persistence
in the literature always involve networks with isomerism among the building blocks.
However, the absence of isomerism among elementary species is not necessary for
vacuous persistence. This requirement is simply the easiest way to realize the impli-
cations

(

Z ∩ Xi 
= ∅
) ⇒ (

Xi ⊆ Z
) ; i = 1, . . . , n . (6.1)

By Proposition 6.4, the implying clause in each of the n Implications (6.1) is true
for reach-closed, stoichiometrically admissible subsets Z ⊆ S . If on another hand
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all n implied clauses are true for such sets Z , we have Se ⊆ Z and the first con-
dition of Theorem 6.8 is satisfied. Therefore, that the n Implications 6.1 are true is
a sufficient condition for vacuous persistence. (This is also tautologically necessary
because both clauses of each implication are trivially true when Z = S .) Realizing
one of these implications amounts to seeking some kind of mutual reachability among
isomeric elementary species. For example, isomerism among elementary species can
occur with substrates and products in enzymatic networks, and one could consider
that a substrate reaches a product modulo a catalyzing enzyme. In Gnacadja [5], the
third and final paper in this series of articles, we explore these ideas and arrive at a
subclass of biochemically important enzymatic networks that have isomerism among
elementary species and are vacuously persistent.

With Theorem 6.9, we obtain that the allosteric ternary complex model of Fig. 1a
is vacuously persistent. The theorem is not applicable to the networks of Fig. 1b and
1c because both have isomerism among their elementary species. However, the futile
enzymatic cycle of Fig. 1b is in the class of networks that are shown in Gnacadja [5]
to be vacuously persistent. On another hand, we saw in Gnacadja [4, Section 5] that
the network of Fig. 1c is not vacuously persistent, and also that Angeli, De Leenheer
and Sontag [1, Section 10] showed that it is persistent.

7 Conclusion

Motivated by the intuition that a reaction network should be persistent if it is con-
structed from building blocks that cannot be depleted, we developed a formalism for
species composition. This yielded the result that if a mass-action reaction network is
explicitly-reversibly constructive, then the absence of isomerism among the elemen-
tary species implies that it is vacuously persistent. The requirement that there be no
isomerism among the elementary species is partially lifted with the work on binary
enzymatic networks in the third and last article in this series of three papers. We think
that there is more to be discovered by incorporating the species composition formalism
in theoretical investigations of reaction networks. For instance, there probably is within
mass-action explicitly-reversibly constructive networks a class of oscillation-free net-
works, and such class should contain a class of networks that are monostationary and
globally asymptotically stable. Just like we noticed that instances of non-persistence
and of non-obvious persistence in the literature always involve networks with isomer-
ism among the building blocks, we also observe that multistationarity seems to always
be illustrated with networks that possess this same property, and cases of oscillations
come with even more particular traits.
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